DRAGEN
Illumina Connected Software
  • Overview
    • Illumina® DRAGEN™ Secondary Analysis
    • DRAGEN Applications
    • Deployment Options
  • Product Guides
    • DRAGEN v4.4
      • Getting Started
      • DRAGEN Host Software
        • DRAGEN Secondary Analysis
      • Clinical Research Workflows
        • DRAGEN Heme WGS Tumor Only Pipeline
          • Quick Start
          • Sample Sheets
            • Introduction
            • Requirements
            • Templates
          • Run Planning
            • Sample Sheet Creation in BaseSpace
            • Custom Config Support
          • DRAGEN Server App
            • Getting Started
            • Launching Analysis
            • Command Line Options
            • Output
            • Advanced Topics
              • Custom Workflow
              • Custom Config Support
              • Illumina Connected Insights
          • ICA Cloud App
            • Getting Started
            • Launching Analysis
            • Advanced Topics
              • Custom Workflow
              • Custom Config Support
              • Post Processing
              • Illumina Connected Insights
          • Analysis Output
          • Analysis Methods
          • Troubleshooting
        • DRAGEN Solid WGS Tumor Normal Pipeline
          • Quick Start
          • Sample Sheets
            • Introduction
            • Requirements
            • Templates
          • Run Planning
            • Sample Sheet Creation in BaseSpace
            • Custom Config Support
          • DRAGEN Server App
            • Quick Start
            • Getting Started
            • Launching Analysis
            • Command Line Options
            • Output
            • Advanced Topics
            • Custom Workflow
              • Custom Config Support
            • Illumina Connected Insights
          • ICA Cloud App
            • Getting Started
            • Launching Analysis
            • Output
            • Advanced Topics
              • Custom Workflow
              • Custom Config Support
              • Post Processing
              • Illumina Connected Insights
          • Analysis Output
          • Analysis Methods
          • Troubleshooting
      • DRAGEN Recipes
        • DNA Germline Panel UMI
        • DNA Germline Panel
        • DNA Germline WES UMI
        • DNA Germline WES
        • DNA Germline WGS UMI
        • DNA Germline WGS
        • DNA Somatic Tumor-Normal Solid Panel UMI
        • DNA Somatic Tumor-Normal Solid Panel
        • DNA Somatic Tumor-Normal Solid WES UMI
        • DNA Somatic Tumor-Normal Solid WES
        • DNA Somatic Tumor-Normal Solid WGS UMI
        • DNA Somatic Tumor-Normal Solid WGS
        • DNA Somatic Tumor-Only Heme WGS
        • DNA Somatic Tumor-Only Solid Panel UMI
        • DNA Somatic Tumor-Only Solid Panel
        • DNA Somatic Tumor-Only Solid WES UMI
        • DNA Somatic Tumor-Only Solid WES
        • DNA Somatic Tumor-Only Solid WGS UMI
        • DNA Somatic Tumor-Only Solid WGS
        • DNA Somatic Tumor-Only ctDNA Panel UMI
        • Illumina scRNA
        • Other scRNA prep
        • RNA Panel
        • RNA WTS
      • DRAGEN Reference Support
        • Prepare a Reference Genome
      • DRAGEN DNA Pipeline
        • DNA Mapping
        • Read Trimming
        • DRAGEN FASTQC
        • Sorting and Duplicate Marking
        • Small Variant Calling
          • ROH Caller
          • B-Allele Frequency Output
          • Somatic Mode
          • Pedigree Analysis
          • De Novo Small Variant Filtering
          • Autogenerated MD5SUM for VCF Files
          • Force Genotyping
          • Machine Learning for Variant Calling
          • Evidence BAM
          • Mosaic Detection
          • VCF Imputation
          • Multi-Region Joint Detection
        • Copy Number Variant Calling
          • Available pipelines
            • Germline CNV Calling (WGS/WES)
            • Germline CNV Calling ASCN (WGS)
            • Multisample Germline CNV Calling
            • Somatic CNV Calling ASCN (WGS)
            • Somatic CNV Calling WES
            • Somatic CNV Calling ASCN (WES)
          • Additional documentation
            • CNV Input
            • CNV Preprocessing
            • CNV Segmentation
            • CNV Output
            • CNV ASCN module
            • CNV with SV Support
            • Cytogenetics Modality
        • Repeat Expansion Detection
          • De Novo Repeat Expansion Detection
        • Targeted Caller
          • CYPDB6 Caller
          • CYP2D6 Caller
          • CYP21A2 Caller
          • GBA Caller
          • HBA Caller
          • LPA Caller
          • Rh Caller
          • SMN Caller
        • Structural Variant Calling
          • Structural Variant De Novo Quality Scoring
          • Structural Variant IGV Tutorial
        • VNTR Calling
        • Population Genotyping
        • Filter Duplicate Variants
        • Ploidy Calling
          • Ploidy Estimator
          • Ploidy Caller
        • Multi Caller
        • QC Metrics Reporting
        • JSON Metrics Reporting
        • HLA Typing
        • Biomarkers
          • Tumor Mutational Burden
          • Microsatellite Instability
          • Homologous Recombination Deficiency
          • BRCA Large Genomic Rearrangment
          • DRAGEN Fragmentomics
        • Downsampling
          • Fractional (Raw Reads) Downsampling
        • Unique Molecular Identifiers
        • Indel Re-aligner (Beta)
        • Star Allele Caller
        • High Coverage Analysis
        • CheckFingerprint
        • Population Haplotyping (Beta)
        • DUX4 Rearrangement Caller
      • DRAGEN RNA Pipeline
        • RNA Alignment
        • Gene Fusion Detection
        • Gene Expression Quantification
        • RNA Variant Calling
        • Splice Variant Caller
      • DRAGEN Single Cell Pipeline
        • Illumina PIPseq scRNA
        • Other scRNA Prep
        • scATAC
        • Single-Cell Multiomics
      • DRAGEN Methylation Pipeline
      • DRAGEN MRD Pipeline
      • DRAGEN Amplicon Pipeline
      • Explify Analysis Pipeline
        • Kmer Classifier
        • Kmer Classifier Database Builder
      • BCL conversion
      • Illumina Connected Annotations
      • ORA Compression
      • Command Line Options
        • Docker Requirements
      • DRAGEN Reports
      • Tools and Utilities
    • DRAGEN v4.3
      • Getting Started
      • DRAGEN Host Software
        • DRAGEN Secondary Analysis
      • DRAGEN Reference Support
        • Prepare a Reference Genome
      • DRAGEN DNA Pipeline
        • DNA Mapping
        • Read Trimming
        • DRAGEN FASTQC
        • Sorting and Duplicate Marking
        • Small Variant Calling
          • ROH Caller
          • B-Allele Frequency Output
          • Somatic Mode
          • Joint Analysis
          • De Novo Small Variant Filtering
          • Autogenerated MD5SUM for VCF Files
          • Force Genotyping
          • Machine Learning for Variant Calling
          • Evidence BAM
          • Mosaic Detection
          • VCF Imputation
          • Multi-Region Joint Detection
        • Copy Number Variant Calling
          • CNV Output
          • CNV with SV Support
          • Multisample CNV Calling
          • Somatic CNV Calling WGS
          • Somatic CNV Calling WES
          • Allele Specific CNV for Somatic WES CNV
        • Repeat Expansion Detection
          • De Novo Repeat Expansion Detection
        • Targeted Caller
          • CYPDB6 Caller
          • CYP2D6 Caller
          • CYP21A2 Caller
          • GBA Caller
          • HBA Caller
          • LPA Caller
          • Rh Caller
          • SMN Caller
        • Structural Variant Calling
          • Structural Variant De Novo Quality Scoring
        • VNTR Calling
        • Filter Duplicate Variants
        • Ploidy Calling
          • Ploidy Estimator
          • Ploidy Caller
        • Multi Caller
        • QC Metrics Reporting
        • HLA Typing
        • Biomarkers
          • Tumor Mutational Burden
          • Microsatellite Instability
          • Homologous Recombination Deficiency
          • BRCA Large Genomic Rearrangment
          • DRAGEN Fragmentomics
        • Downsampling
          • Fractional (Raw Reads) Downsampling
          • Effective Coverage Downsampling
        • Unique Molecular Identifiers
        • Indel Re-aligner (Beta)
        • Star Allele Caller
        • High Coverage Analysis
        • CheckFingerprint
        • Population Haplotyping (Beta)
        • DUX4 Rearrangement Caller
      • DRAGEN RNA Pipeline
        • RNA Alignment
        • Gene Fusion Detection
        • Gene Expression Quantification
        • RNA Variant Calling
        • Splice Variant Caller
      • DRAGEN Single-Cell Pipeline
        • scRNA
        • scATAC
        • Single-Cell Multiomics
      • DRAGEN Methylation Pipeline
      • DRAGEN Amplicon Pipeline
      • Explify Analysis Pipeline
        • Kmer Classifier
        • Kmer Classifier Database Builder
      • DRAGEN Recipes
        • DNA Germline Panel UMI
        • DNA Germline Panel
        • DNA Germline WES UMI
        • DNA Germline WES
        • DNA Germline WGS UMI
        • DNA Germline WGS
        • DNA Somatic Tumor-Normal Solid Panel UMI
        • DNA Somatic Tumor-Normal Solid Panel
        • DNA Somatic Tumor-Normal Solid WES UMI
        • DNA Somatic Tumor-Normal Solid WES
        • DNA Somatic Tumor-Normal Solid WGS UMI
        • DNA Somatic Tumor-Normal Solid WGS
        • DNA Somatic Tumor-Only Heme WGS
        • DNA Somatic Tumor-Only Solid Panel UMI
        • DNA Somatic Tumor-Only Solid Panel
        • DNA Somatic Tumor-Only Solid WES UMI
        • DNA Somatic Tumor-Only Solid WES
        • DNA Somatic Tumor-Only Solid WGS UMI
        • DNA Somatic Tumor-Only Solid WGS
        • DNA Somatic Tumor-Only ctDNA Panel UMI
        • RNA Panel
        • RNA WTS
      • BCL conversion
      • Illumina Connected Annotations
      • ORA Compression
      • Command Line Options
      • DRAGEN Reports
      • Tools and Utilities
  • Reference
    • DRAGEN Server
    • DRAGEN Multi-Cloud
      • DRAGEN on AWS
      • DRAGEN on AWS Batch
      • DRAGEN on Microsoft Azure
        • Run DRAGEN VM on Azure
      • DRAGEN on Microsoft Azure Batch
        • Azure Batch Run Modes
    • DRAGEN Licensing
      • DRAGEN Server Licensing
      • DRAGEN Cloud Licensing
    • DRAGEN Application Manager
    • Support
    • Resource Files
      • Noise Baselines
    • Supplementary Information
    • Troubleshooting
    • Citing DRAGEN software
    • Release Notes
    • Revision History
Powered by GitBook
On this page
  • SMA Calling With DRAGEN-STR
  • SMA Result in repeat.vcf Output File
  • SMN Caller
  • Total and Intact SMN Copy Number
  • SMN1 Copy Number at Differentiating Sites
  • Copy number call for NM_000344.4:c.*3+80T>G
  • SMN Output File
  • References

Was this helpful?

Export as PDF
  1. Product Guides
  2. DRAGEN v4.4
  3. DRAGEN DNA Pipeline
  4. Targeted Caller

SMN Caller

PreviousRh CallerNextStructural Variant Calling

Last updated 2 days ago

Was this helpful?

Disruption of all copies of the SMN1 gene in an individual causes spinal muscular atrophy (SMA). SMN1 has a high identity paralog, SMN2. SMN2 differs only in approximately 10 SNVs and small indels. For example, hg19 chr5:70247773 C->T affects splicing and largely disrupts the production of functional SMN protein from SMN2. Due to the high-similarity duplication combined with common-copy number variation, standard whole-genome sequencing (WGS) analysis does not produce complete variant calling results for SMN. Since 95% of SMA cases result from the absence of the functional C (SMN1) allele in any copy of SMN¹, a targeted calling solution can be effective in detecting SMA.

DRAGEN offers the following two independent components that can call the SMN1 copy number from a germline sample.

  • DRAGEN-STR

  • SMN Caller

SMA Calling With DRAGEN-STR

SMA calling is implemented together with repeat expansion detection using sequence-graph realignment to align reads to a single reference that represents SMN1 and SMN2.

In addition to the standard diploid genotype call, SMA Calling with DRAGEN-STR uses a direct statistical test to check for presence of any C allele. If a C allele is not detected, the sample is called affected, otherwise unaffected.

SMA calling is only supported for human whole-genome sequencing with PCR-free libraries.

To enable SMA calling along with repeat expansion detection, set the --repeat-genotype-enable option to true. For information on graph-alignment options, see .

To activate SMA calling, the variant specification catalog file must include a description of the targeted SMN1/SMN2 variant. The <INSTALL_PATH>/resources/repeat-specs/experimental folder contains example files.

The <output-file-prefix>.repeat.vcf file includes SMN output along with any targeted repeats. SMN output is represented as a single SNV call at the splice-affecting position in SMN1 with SMA status in the following custom fields.

SMA Result in repeat.vcf Output File

Field
Description

VARID

SMN marks the SMN call.

GT

Genotype call at this position using a normal (diploid) genotype model.

DST

SMA status call: + indicates detected - indicates undetected ? indicates undetermined.

AD

Total read counts supporting the C and T allele.

RPL

Log10 likelihood ratio between the unaffected and affected models. Positive scores indicate the unaffected model is more likely.

SMN Caller

The SMN Caller calls SMN1 and SMN2 copy numbers and detects the presence of a SNP, NM_000344.4:c.*3+80T>G that is associated with the two-copy SMN1 allele. The caller is derived from the method implemented in Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data.²

The SMN Caller performs the following steps:

  1. Determines total and intact SMN copy numbers

  2. Calls SMN1 copy number at eight differentiating sites

  3. Determines copy number for NM_000344.4:c.*3+80T>G

Total and Intact SMN Copy Number

Two common copy-number variants (CNVs) in SMN1 and SMN2 include whole gene CNV and a partial gene deletion of exons 7 and 8. Reads that align to either SMN1 or SMN2 are counted. The read counts in exon 1 through exon 6 are used to determine total SMN copy number. The read counts in exon 7 and 8 are used to determine the SMN copies that do not have the exon 7 and 8 deletion (intact SMN copy number). To estimate the SMN copy number for these two regions, read counts are normalized to a diploid baseline derived from 3000 preselected 2 kb regions across the genome. The 3000 normalization regions are randomly selected from the portion of the reference genome that has stable coverage across population samples. The SMN Caller then calculates the number of SMN copies that have the exon 7 and 8 deletion by subtracting the intact SMN copy number from the total SMN copy number.

SMN1 Copy Number at Differentiating Sites

To calculate the SMN1 copy number, the caller uses eight predefined differentiating sites in exons 7 and 8 of SMN1 and SMN2. One of these sites is the splice site variant used for SMA calling with DRAGEN-STR (see SMA Calling With DRAGEN-STR). The caller selects differentiating sites at positions that have sequence differences between SMN1 and SMN2 where calling the SMN1 copy number is most likely to be correct based on sequencing data from the 1000 Genomes Project.

For each differentiating site, the SMN1-specific and SMN2-specific alleles are counted in reads mapping to either SMN1 or the homologous region in SMN2. The caller uses a binomial model to calculate the likelihood of each possible SMN1 copy number from the two gene-specific counts given the intact SMN copy number calculated in the previous step.

Copy number call for NM_000344.4:c.*3+80T>G

For this high-homology region SNP, reads mapping to either SMN1 or SMN2 are used for variant calling. The number of reads containing the variant allele and the nonvariant allele are counted and then a binomial model that incorporates the sequencing error rate is used to determine the most likely variant allele copy number (0 for nonvariant).

SMN Output File

"smn": {
    "fullLengthCopyNumber": 3,
    "totalCopyNumber": 3,
    "smn1CopyNumber": 2,
    "smn2CopyNumber": 1,
    "smn2Delta78CopyNumber": 0,
    "fullLengthCopyNumberFloat": "2.99",
    "totalCopyNumberFloat": "3.01",
    "variants": [
    {
        "alleleId": "NM_000344.4:c.*3+80T>G",
        "alleleCopyNumber": 1,
        "genotypeQuality": 26,
        "filter": "PASS"
    }
    ]
}

For SMN caller, the fields are defined as follows.

Fields in JSON
Explanation
Type and Possible Values

fullLengthCopyNumber

Copy number of intact SMN (exons 7 & 8)

nonnegative integer

totalCopyNumber

Copy number of total SMN (exons 1 to 6)

nonnegative integer

smn1CopyNumber

Copy number of intact SMN1

nonnegative integer or null for no-call

smn2CopyNumber

Copy number of intact SMN2

nonnegative integer or null for no-call

smn2Delta78CopyNumber

Copy number of SMN2Δ7–8 (deletion of exon 7 and 8)

nonnegative integer

fullLengthCopyNumberFloat

Raw normalized depth of intact SMN (exons 7 & 8)

string representing nonnegative floating point number

totalCopyNumberFloat

Raw normalized depth of total SMN (exons 1 to 6)

string representing nonnegative floating point number

variants

a json array containing info about specific SMN variants

json-array

Each variant reported in the variants array will have the fields below.

Fields in JSON
Explanation
Type and Possible Values

alleleId

HGVS identifier of the variant allele

string

alleleCopyNumber

Copy number of the allele in the called genotype

nonnegative integer

genotypeQuality

Phred-scaled quality for the called genotype

nonnegative integer

filter

Filter for the called genotype

string. "PASS" when not filtered

References

¹Wirth B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Human Mutation. 2000;15(3):228-237. doi:10.1002/(SICI)1098-1004(200003)15:3<228::AID-HUMU3>3.0.CO;2-9

²Chen X, Sanchis-Juan A, French CE, et al. Spinal muscular atrophy diagnosis and carrier screening from genome sequencing data. Genetics in Medicine. 2020;22(5):945-953. doi:10.1038/s41436-020-0754-0

For information about enabling the SMN caller see .

The SNP (also referred to as g.27134T>G) has been reported in the literature to be associated with the two-copy SMN1 allele.

The SMN Caller prints out its calls in the targeted caller output file, <output-file-prefix>.targeted.json that also contains calls from other targets (see ). An example of the SMN caller content in this file is shown below.

The variant NM_000344.4:c.*3+80T>G is also reported in VCF format. See for details about how these variants are reported in VCF.

Repeat Expansion Detection
NM_000344.4:c.*3+80T>G
Targeted Caller
Targeted JSON File
Targeted VCF File