Somatic WGS Tumor Only
DRAGEN Recipe - Somatic WGS Tumor Only
Overview
This recipe is for processing whole genome sequencing data for somatic tumor only workflows.
Example Command Line
For most scenarios, simply creating the union of the command line options from the single caller scenarios will work.
Configure the INPUT options
Configure the OUTPUT options
Configure MAP/ALIGN depending on if realignment is desired or not
Configure the VARIANT CALLERs based on the application
Configure any additional options
Build up the necessary options for each component separately, so that they can be re-used in the final command line.
The following are partial templates that can be used as starting points. Adjust them accordingly for your specific use case.
Additional Notes and Options
Optional settings per component are listed below. Full option list at this page.
In general (for most libraries and sample types) we recommend the default values, however for some specific libraries or sample types where it may be advisable to use different values those are explicitly listed below each variant caller section under "library specific settings".
CNV
SNV
SNV library specific settings
SNV systematic noise file
Generic SNV noise files can be downloaded here: DRAGEN Software Support Site page
When possible it is recommended to build a pipeline specific systematic noise file that matches the library prep and sequencer of interest:
Step 1. Run DRAGEN somatic tumor-only on each of approximately 20-50 normal samples:
Gather the full paths to the VCFs from step 1 in ${VCF_LIST} by specifying 1 file per line.
Step 2. Generate the final noise file with:
To download a SINE/ALU regions bed for SNV excluded regions
ALUs comprise approximately 11% of the genome and are common in introns. High rates of deamination FP calls have been observed in some FFPE libraries. If the ALU regions are not clinically significant for a specific analysis, then it is recommended to simply filter out the entire ALU region using the DRAGEN excluded regions filter: --vc-excluded-regions-bed $BED
.
The ALU bed file can be downloaded as part of the Bed File Collection: DRAGEN Software Support Site page
SV
SV library-specific settings
To build the SV systematic noise file
You can generate systematic noise BEDPE files from normal samples collected using library prep, sequencing system, and panels.
To generate a BEDPE file, do as follows.
Run DRAGEN somatic tumor-only on normal samples with
--sv-detect-systematic-noise
set to true to generate VCF output per normal sample.Build the BEDPE file using the VCFs and the
--sv-build-systematic-noise-vcfs-list
: List of input VCFs from previous step. Enter one VCF per line. Example command line is provided below
You can also build systematic noise BEDPE files in the cloud using the DRAGEN Baseline Builder App on BaseSpace.
SNV-SV deduplication
We recommend using --enable-variant-deduplication true
to filter all small indels in the structural variant VCF that appear and are passing in the small variant VCF (PASS
in the FILTER
column of the small variant VCF file). Using this feature, DRAGEN will create a new VCF that contains variants in SV VCF that are not matching a variant from SNV VCF file. The new deduplicated SV VCF file will have the same prefix passed by --output-file-prefix
followed by sv.small_indel_dedup
. DRAGEN normalizes variants by trimming and left shifting by up to 500 bases. An instance of utilizing this feature is when incorporating both SV and SNV callers in somatic workflows, which can increase sensitivity and prevent the occurrence of replicated variants within genes such as FLT3 and KMT2A.
MSI
Microsatellite sites file
Microsatellite sites file can be downloaded here: DRAGEN Software Support Site page
Build Normal references of miscrosatellite repeat distribution
Normal reference files can be generated by running collect-evidence
mode on a panel of normal samples. This ONLY works with DRAGEN germline mode.
The --msi-microsatellites-file
should be the same file used for running tumor-only
mode. --msi-coverage-threshold
should also be the same value used for running tumor-only
mode.
A minimum of 20 normal samples is required for tumor-only mode.
HLA
Last updated